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RUHAMA EVEN* 

SUBJECT M A T T E R  K N O W L E D G E  F O R  T E A C H I N G  A N D  


T H E  CASE O F  F U N C T I O N S  


ABSTRACT. Interest in teachers' subject matter knowledge has arisen in recent years. But 
most of the analysis has been general and not topic-specific. This paper shows how one may 
approach the question of teachers' knowledge about mathematical topics. It demonstrates the 
building of an analytic framework of subject matter knowledge for teaching a specific topic in 
mathematics and then uses the concept of function to provide an illustrative case of a 
parad~gm for analyzing subject matter knowledge for teaching. The choice of the aspects, 
which form the maln facets of the framework, was based on integrated knowledge from 
several bodies of work: the role and importance of the topic in the discipline of mathematics 
and in the mathematics curriculum; research and theoretical work on learning, knowledge and 
understanding of mathematical concepts in general and the specific topic in particular; and 
research and theoretical work on teachers' subject matter knowledge and its role in teaching. 
An applicat~on of the framework in the case of the concept of function is described and 
illustrated by anecdotes drawn from a study of prospective secondary teachers' knowledge and 
understanding of functions. 

Mathematics educators today are concerned with the way mathematics is 
taught. They call for making a change in the way teachers teach to 
emphasize teaching for understanding and meaningful learning (e.g., Davis, 
1986; Educational Technology Center, 1988; Lampert, 1988; Lappan and 
Schram, 1989; NCTM, 1989a; Peterson, 1988; Resnick, 1987; Romberg, 
1983; Schoenfeld, 1987). The teacher's role is to help the learner achieve 
understanding of the subject matter. But in order to do so the teachers 
themselves need to have solid knowledge of the subject matter. A teacher 
who has solid mathematical knowledge for teaching is more capable of 
helping his/her students achieve a meaningful understanding of the subject 
matter. Subject matter knowledge is only one component of the knowledge 
of a well prepared teacher - nevertheless - an important one. 

Recent reform efforts (e.g., Carnegie Task force, 1986; Holmes Group, 
1986; NCTM, 1989b) are designed to improve professional teacher educa- 
tion. One of the goals of the current attempts to reform teaching is to 
strengthen the subject matter preparation of teachers: " . . . [prospective 
teachers] will be expected to pass an examination demonstrating their 
mastery of the subject they will teach" (Holmes Group, 1986). At the same 
time, interest in defining and analyzing what subject matter knowledge for 
teaching means has arisen. 
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Conceptions of teachers' subject matter knowledge have changed 
throughout the years. At the beginning of this century, Dewey (1904) 
described teacher subject matter knowledge in qualitative terms which did 
not provide a straightforward way of measuring or evaluating knowledge. 
When process-product research on teaching became popular, teacher sub- 
ject matter knowledge was defined in quantitative terms - by the number 
of courses taken in college or teachers' scores on standardized tests (Ball, 
in press; Wilson, Shulrnan, and Richert, 1987). But these "measures" are 
problematic, since they do not represent teachers' knowledge of the sub- 
ject matter. Shulman's (1986) Presidential Address at the 1985 annual 
meeting of the American Educational Research Association in Chicago, 
signaled a return to a definition of teachers' subject matter knowledge in 
qualitative terms. Other scholars today also write about teachers' subject 
matter knowledge in qualitative terms (Ball, in press; Leinhardt and 
Smith, 1985; Tamir, 1987; Wilson et al., 1987). Defining teachers' subject 
matter knowledge not by the number of courses they have taken or their 
success on standardized tests, but by analyzing what it means to know 
mathematics, has some promise to contribute to the improvement of the 
quality of subject matter preparation of teachers and therefore the quality 
of teaching and learning. 

Still, analyzing what teachers' subject matter knowledge means in 
general in mathematics, does not inform us of what subject matter knowl- 
edge teachers need to have in order to teach a specific piece of math- 
ematics. While qualitative analysis of teachers' subject matter knowledge 
has brought us one step forward from a simplistic list of competen- 
cies that served as a criterion to knowledge, such analyses miss specific 
characteristics of knowledge needed for teaching a specific mathematical 
topic. 

This paper shows how one may approach the question of teachers' 
knowledge about mathematical topics. It demonstrates the building of an 
analytic framework of subject matter knowledge for teaching a specific 
topic in mathematics. First, the development of a general framework is 
discussed, emphasizing the general and guiding principles of the analysis. 
Then, an application of the framework in the case of the concept of 
function is described to provide an illustrative case of a paradigm for 
analyzing subject matter knowledge for teaching. Anecdotes drawn from a 
cross-institutional study of prospective secondary teachers' knowledge of 
functions (Even, 1989) are used as illustration for clarifying the frame- 
work and pointing out weaknesses in existing teacher knowledge. 
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T H E  G E N E R A L  F R A M E W O R K  

Teachers' subject matter knowledge about a specific mathematical topic is 
influenced by what they know across different domains of knowledge. 
Therefore, analysis of teachers' subject matter knowledge about a specific 
piece of mathematics should integrate several bodies of knowledge; the role 
and importance of the topic in mathematics and in the mathematics 
curriculum; research and theoretical work on learning, knowledge and 
understanding of mathematical concepts in general and the specific topic in 
particular; and research and theoretical work on teachers' subject matter 
knowledge and its role in teaching. The analysis should also take into 
account the specific population of consideration. As a result of this 
analysis, the following seven aspects seemed to form the main facets of 
teachers' subject matter knowledge about a specific mathematical topic. 

Essential Features 

One aspect of the framework deals with the concept image, paying atten- 
tion to the essence of the concept. Vinner (1983) defines concept image as 
the mental picture of this concept (i.e., the set of all 'pictures' that have 
ever been associated with the concept in the person's mind) together with 
the set of properties associated with the concept (in the person's mind). The 
image of a concept might be different for different people. Resnick and 
Ford ( 1984), following Greeno's ( 1978) suggestion, present 'correspon- 
dence' - the match of one's subjective mental picture of a specific concept 
with the correct mathematical concept - as an important criterion for 
evaluating well-structured knowledge about mathematics. Not many will 
dispute the general claim that teachers should have a good match between 
their understanding of a specific mathematical concept they teach and the 
"correct" mathematical concept. But what is the "correct" mathematical 
concept? 

Although the answer to this question is not definite and is content and 
context specific, we argue that teachers need to be able to judge whether an 
instance belongs to a concept family by using an analytical judgement as 
opposed to a mere use of a prototypical judgement. The first type of 
reasoning is based on the concept's critical attributes (the attributes that an 
instance must have in order to be a concept example). They are derived 
from the concept's mathematical definition. The second type uses a proto- 
typical example as the frame of reference either by applying a visual 
judgement to other instances or by basing the judgement on the prototype's 
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self attributes and imposing them on other concept examples (Hershkowitz, 
1990). 

The concept image is determined mainly by the instances people meet 
and not by the concept definition. However, it is not enough that teachers 
are able to distinguish between concept examples and non-examples when 
the instances match their concept image only. Teachers, especially when 
they let their students explore and raise questions, may be put in situations 
where they have to deal with unfamiliar instances. Their pedagogical 
decisions - questions they ask, activities they suggest - are based on their 
subject matter knowledge. Therefore, it is necessary that teachers are able 
to correctly distinguish between concept examples and non-examples. 

In addition to the pedagogical arguments described above there are also 
cultural arguments. Many mathematical concepts have been changed dur- 
ing the years. They have evolved not because someone arbitrarily decided 
to make changes but rather because new knowledge in mathematics created 
the need for the extended concept definition. New discoveries created new 
branches of mathematics which also led to changes in the definitions. 
Mathematics teachers who are constrained by their limited and underdevel- 
oped concept image may also be deprived from understanding current 
mathematics which is based on a more modem conception of functions. 

Diferent Representations 

Many important concepts in mathematics appear and behave in different 
ways. While the pure definition of a concept may make it look narrow and 
one-sided, complex concepts have different labels and notations and they 
appear in different representations throughout the numerous divisions of 
mathematics. Therefore, another aspect of the framework involves the 
different representations of the concept. 

Understanding a concept in one representation does not necessarily 
mean that one understands it in another representation. Teachers need to 
understand concepts in different representations, and be able to translate 
and form linkages among and between them. Different representations give 
different insights which allow a better, deeper, more powerful and more 
complete understanding of a concept. When dealing with a mathematical 
concept in different representations, one may abstract the concept by 
grasping the common properties of the concept while ignoring the irrele- 
vant characteristics that are imposed by the specific representation at hand 
(Dufour-Janvier, Bednarz, and Belanger, 1987; Lesh, Post, and Behr, 
1987). 
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Alternatiue Ways of Approaching 

The appearances of a complex concept in various forms, representa-
tions, labels and notations are enhanced by the different uses of the 
concept in the different divisions of mathematics, other disciplines or 
everyday life. Alternative ways of approaching the same concept are used. 
These alternative ways are different from one another and none of them 
are suitable for all situations. Sometimes, when more than one approach 
can be used, some are more appropriate than others. Therefore, there is a 
need to make good choices between different available approaches. Teach- 
ers should be familiar with the main alternative approaches and their 
uses. 

The Strength of the Concept 

The success of a concept in the discipline of mathematics is rooted in the 
new opportunities it opens. Concepts become important and powerful 
because there is something special about them which is very unique and 
opens new possibilities. Teachers should, therefore, have a good under- 
standing of the unique powerful characteristics of the concept. The related 
important sub-topics or sub-concepts, as with any other concept, cannot 
be fully understood or appreciated if viewed in one simplistic way only. 
Understanding such sub-topics or sub-concepts requires knowing the gen- 
eral meaning which captures the essence of the definition as well as a 
more sophisticated formal mathematical knowledge. 

Basic Repertoire 

With every mathematical topic or concept there is also a need to know 
and have easy access to specific examples. The basic repertoire includes 
powerful examples that illustrate important principles, properties, theo-
rems, etc. Acquiring the basic repertoire gives insights into and a deeper 
understanding of general and more complicated knowledge. When having 
to deal with complex situations the basic knowledge serves as a reference, 
monitoring ways of thinking and acting. The basic repertoire should be 
well known and familiar in order to be readily available for use. But this 
is not to suggest that it should be memorized and used without under- 
standing. On the contrary - only if the basic repertoire is acquired 
meaningfully and with understanding can it be used appropriately and 
wisely. 
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Knowledge and Understanding of a Concept 

Conceptual knowledge is described by Hiebert and Lefevre (1986) as 
knowledge which is rich in relationships. It is a network of concepts and 
relationships (Bell, Costello, and Kuchemann, 1983). The learning of a new 
concept or relationship implies the addition of a node or link to the existing 
cognition structure, thus making the whole more stable than before. 
Meaning, say Hiebert and Lefevre, is generated as relationships between 
units of knowledge are recognized or created. So, conceptual knowledge 
must be learned meaningfully. Procedural knowledge, on the other hand, is 
made up of the formal language of mathematics and the algorithms for 
completing mathematical tasks. Procedural knowledge can be learned with 
or without meaning. 

School mathematics tends to over-emphasize procedural knowledge 
without close relation to conceptual knowledge and meaning (e.g., Davis, 
1986; Educational Technology Center, 1988; Lampert, 1988; Lappan and 
Schram, 1989; NCTM, 1989a; Peterson, 1988; Schoenfeld, 1987). Students 
are asked to memorize a lot of facts and procedures without paying 
attention to an understanding of concepts and their application even 
though the advanced technology we have now and will have in the future, 
will handle this aspect of performing procedures and algorithms. 

But our desire to achieve meaningful learning and understanding does 
not mean that we should ignore procedural knowledge. While there is no 
reason to memorize algorithms that are easily done by machines, proce- 
dural knowledge is still important. Nesher (1986) claims that the di- 
chotomy between learning algorithms and understanding is a superficial 
and misleading dichotomy since research on mathematical performance 
does not inform us about the relationship between success in algorithmic 
performance versus success in understanding nor does it give evidence 
about the contribution of understanding to algorithmic performance. 
Resnick and Ford (1984) add that memorization of certain facts and 
procedures is important not so much as an end in itself, but as a way to 
extend the capacity of the working memory. This can be done by develop- 
ing automaticity of responding. When certain processes can be carried out 
automatically, without need for direct attention, more space becomes 
available in working memory for processes that do require attention. 

Mathematical knowledge in general, should include both kinds of knowl- 
edge and the relationships between them. When knowledge is used dynam- 
ically to solve a problem or perform some nontrivial task, it is the 
relationships between conceptual and procedural knowledge that become 
important (Silver, 1986). People are not competent in mathematics if either 
kind of knowledge is deficient or if they have been acquired but remain 
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separate entities (Hiebert and Lefevre, 1986). When concepts and procedures 
are not connected, people may have a good intuitive feel for mathematics 
but not be able to solve problems, or they may generate answers but not 
understand what they are doing. 

Knowledge about Mathematics 

Knowledge of a specific piece of mathematics includes more than conceptual 
and procedural knowledge. It also includes knowledge about the nature of 
mathematics. This is a more general knowledge about a discipline which 
guides the construction and use of conceptual and procedural knowledge. 
It includes ways, means and processes by which truths are established as well 
as the relative centrality of different ideas (Ball, in press; Lampert, 1988; 
Schoenfeld, 1988; Shulman, 1986; Tamir, 1987; Thompson, 1984). The 
nature of mathematics also includes its everchanging character as well as its 
being a free invention of the human intellect which is influenced by different 
forces inside and outside mathematics (Wilder, 1972). 

Up to this point, this analysis has focused on teachers' knowledge about 
mathematical topics. The next part focuses on the implication of the general 
framework in the case of the concept of function with illustrations of 
difficulties caused by lack of understandings related to the different aspects. 
The illustrations are taken from a study of prospective secondary mathemat- 
ics teachers' knowledge and understanding about functions (Even, 1989). 
Participants were 162 prospective secondary mathematics teachers in the last 
stage of their formal presemice preparation at eight midwestern universities 
in the USA. Data were gathered in two phases from November 1987 to April 
1988. During the first phase, the prospective teachers completed an open- 
ended questionnaire. This questionnaire included non-standard mathematics 
problems addressing the seven interrelated aspects of function knowledge. 
The questionnaire also asked respondents to appraise and comment on 
examples of students' work (each of which represented some misunderstand- 
ing or error related to functions). In a second phase of data collection, 
intensive interviews were conducted with ten of the participating prospective 
teachers in order to augment the analysis. 

T H E  CASE O F  FUNCTIONS 

Essential Features - What is a Function? 

Freudenthal (1983), in his exhaustive analysis, considers arbitrariness and 
univalence to be the essential features of the concept of function as it has 
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evolved in history. Arbitrariness is closely related to an analytical judge- 
ment whether an instance belongs to a concept family (as described in the 
general framework) while univalence is a function specific characteristic. 

Arbitrariness of functions. The arbitrary nature of functions refers to both 
the relationship between the two sets on which the function is defined and 
the sets themselves. The first means that functions do not have to be 
described by any specific expression, follow some regularity, or be de- 
scribed by a graph with any particular shape. The function that describes 
the relationship between time and temperature is an example of this kind of 
functions. The arbitrary nature of the two sets means that functions do not 
have to be defined on any specific set of objects; in particular, the sets do 
not have to be sets of numbers. A rotation of the plane is an example of 
this type of functions since it is defined on points. 

The 18th century mathematicians struggled with the arbitrariness idea of 
functions. It was not until the 19th century, when Dirichlet introduced the 
function (well known now as Dirichlet Function) which to each rational 
number assigns the number 1 and to each irrational - the number 0, that 
arbitrary functions started to be considered functions and thus the concept 
enlarged its meaning. Later, in addition to the arbitrariness of the relation- 
ship between the variables, the variables themselves or the sets on which 
the function is defined were allowed to be any sets - arbitrary sets. 

The following example shows a rejection of the arbitrariness nature of 
functions as a result of a use of a prototypical judgement whether an 
instance is a function, combined with a limited concept image. A prospec- 
tive teacher. when having to decide whether the following was a function: 

x, if x is a rational number, 


0, if r is an irrational number. 

................................................................ 


based his decision that it was a function on a correct definition of a 
function: "There is an assignment of a single value to each number." His 
answer may give the impression that this subject makes his decisions 
whether something is a function by using the definition for an analytical 
judgement. and therefore accepts the arbitrary nature of functions. But 
later. it became clear that things were not so simple. When the prospective 
teacher was asked to sketch the corresponding graph, he got a few points 
on the x-axis for irrational numbers: x ,  :(!), f i ;and a diagonal line -
y = x - with "holes" in it (see Figure 1). Having an unfamiliar graph in 
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Fig. I .  A function? 

front of him. the subject had a hard time deciding whether this graph was 
a graph of a function. His difficulty was caused by the discrepancy between 
his concept image of a function and the formal concept definition. 

I don't know if it's a function. It fits the criteria of mapping, but it does not look pretty. It's 
not really graphable. I t  might just not be. But this is a discontinuous function. You're allowed 
to do  discontinuous. There aren't sharp points. Oh, wel l . .  . [shrugged his shoulders, cannot 
make up his mind whether the given was a function]. 

The above situation was not uncommon among the prospective teachers 
who participated in the study, although it appeared in different forms. 
Many rejected the arbitrary nature of functions either because they ex-
pected functions to always be representable by formulas, graphs of func- 
tions to be "nlce'' and "reasonable", or functions to somehow be 
"known". 

These results agree with the results of other researchers who have 
investigated high school and college students' ideas about what makes 
something a function and compared students' concept images (Vinner, 
1983) to the mathematical definition (Dreyfus and Eisenberg, 1983, 1987; 
Lovell, 1971; Markovits, Eylon, and Bruckheimer, 1983, 1986; Marnyan- 
skii, 1975; Thomas, 1975; Vinner, 1983; Vinner and Dreyfus, 1989). The 
results of these studies point to a limited view of functions which is caused 
by having some specific expectations about functions and their behavior. 
This situation is understandable - almost all the functions that high school 
and sometimes even college students meet are the kind that have a "nice" 
graph and can be described by a formula, so the students' concept image of 
a function is determined by the functions they meet and not by the modem 
definition of a function which emphasizes the arbitrary nature of functions. 
But while this could be acceptable with students, this is not acceptable with 
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teachers. We cannot accept a situation where secondary teachers at the end 
of the 20th century have a limited concept of function, similar to the one 
from the 18th century. Teachers' incomplete conception of functions is 
problematic and may contribute to the cycle of discrepancies between 
concept definition and concept image of functions in students, keeping the 
students' concept image of function similar to the one from the 18th 
century. 

C'nivalence. While the arbitrary nature of functions is implicit in the 
definition of a function, the univalence requirement. i.e., that for each 
element in the domain there be only one element (image) in the range, is 
stated explicitly. This requirement is an integral part of every curriculum 
that deals with functions and is emphasized in almost every text definition. 
For example, "Let D and R be two sets. A function from D to R is a rule 
that assigns to each member of D a unique member of R" (Dolciani et al., 
1986). 

Distinguishing between functions and non-functions by using the univa- 
lence requirement is also a very common activity in most texts on func- 
tions. For example, "State whether the given set of ordered pairs is a 
function. When a relation is not a function, tell why it is not" (Coxford 
and Payne, 1987, pp. 178-9). Similar exercises are given in most other 
textbooks which introduce functions (e.g., Dolciani et al., 1986; Keedy et 
al., 1986; Nichols et al., 1986). 

While one may argue about the overemphasis this requirement gets in 
relation to the understanding of the concept of function and about the 
place in the curriculum for teaching it to students, one cannot ignore 
univalence completely since this is an integral part of the modem concept 
of function. However, knowing that functions have to be univalent is not 
sufficient. Secondary teachers need to know why functions are defined this 
way. They should be familiar with the historical development of functions 
since this explains why functions came to be the way they are defined today 
and provides meaning to the definition. 

As the history of the development of the concept of function shows, 
univalence was not required at the beginning. Freudenthal (1983) attributes 
this requirement to the desire of mathematicians to keep things manage- 
able. Keeping track of meanings of multivalued symbols (such as ,/'-), and 
taking care that they have the same meaning in the same context is not easy 
and requires a lot of watchfulness. When one has to deal with differentials 
of orders higher than one, one has to distinguish independent from 
dependent variables, and then multivalued symbols become too messy. 
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Advanced analysis of functions led to the restriction of functions to 
univalent functions only and this was generally accepted as the definition of 
functions. 

Most of the participants in the study knew about the univalence property 
of functions and its use as a criterion for telling whether something was a 
function. Many subjects considered univalence to be important. But almost 
none of them could explain why it is important and how functions came to 
be defined that way. For example, when asked to explain the importance of 
univalence, one prospective teacher said: "I don't know why. I don't know 
why there should be one. It's the way I always learned though." 

After being pressed to think of an explanation for this requirement, some 
subjects tried to use everyday life, engineering or science as the source of 
this requirement, seeing no connection to pure mathematics. Some other 
subjects thought that the importance of the requirement was rooted in 
mathematics. But the historical explanation of keeping things manageable 
was not always the origin for this belief. One subject, for example, 
described the origin of the requirement as arbitrary. 

It seems like that would be, whoever decided to call that a function just made it one of the 
requirements. 1 would just think, that would be, whoever decided to call it a function just 
decided: if it looks like a graph, like this, and has only one, and I'm going to call that a 
function. 

Some serious questions are raised by the fact that, without prompting, 
none of the subjects could come up with a reasonable explanation for the 
need for the property of univalence. This requirement is, usually, presented 
to our students as one of the most important characteristics of functions 
and this is what many of them think. They know that it distinguishes 
between relations that are not functions and those which are. But, in many 
cases, they are not told why is it important to distinguish between these two 
groups. Many mathematics teachers do not explain what is it that you can 
do with functions that you cannot do with relations which are not 
functions. This approach may contribute to making mathematics looks like 
an arbitrary collection of rules and definitions - an approach that the 
subject above seemed to hold. 

Arbitrariness and univalence are the essence of the modem concept of 
function. Teachers, we claim, should have a good match between their 
concept image of a function and the modern mathematical concept. But this 
does not necessarily imply that they should know the modern formal 
definition of a function where a function f is defined to be any set of 
ordered pairs of elements such that if (a, b)&f, (c, d )~ f ,  and a =c. then 
b = d. In other words, teachers should not necessarily think of a function 
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as of a special subset of the Cartesian product of two sets, in which any 
element in the domain (the set of all first elements of the ordered pairs) 
should be paired with one and only one element in the range (the set of all 
second elements of the ordered pairs). While the pure set definition of a 
function is, of course, correct, it does not convey the meaning of a function 
as it is usually used in mathematics, science or everyday life, as was already 
claimed by Freudenthal (1983) and Malik (1980). In many cases, a 
function has the form of a correspondence, a dependence or an assignment 
between two sets or variables. 

D~fferent Representations of Functions 

The function is described as a unifying concept. But functions appear and 
behave in different ways. Today functions are everywhere in mathematics. 
MacLane ( 1986) gives many examples: Algebraic operations provide exam- 
ples of functions of numbers. Geometric definitions produce trigonometric 
functions. The exponential function and its inverse, the logarithmic func- 
tion, are also numerical functions. Functions of points in the plane or in 
space, such as rotation, reflection and translation, arise in geometry. In 
group theory, the inverse is a function from the group to itself. In a metric 
space, the distance is a real-valued function of pairs of points. In Boolean 
algebra, intersection and union are functions of pairs of sets. In geometry, 
length is a real-valued function of curves. Computer science also provides 
new ways of using functions. 

Freudenthal (1983) also points to the different labels functions have in 
mathematics: mapping, transformation, permutation, operation, functional, 
operator, sequence, morphism, etc. There are also different function nota- 
tions which make the function concept look like different concepts instead 
of one unifying concept. When algebraic operations are used to describe 
functions, a common notation is f : x -+ 2 + x. Many functions that were 
recognized as such in the early days of functions, have a special importance 
or are used extensively, have specific names and use specific notation. 
These, for example, are the trigonometric functions: sin, cos, tan, etc., and 
also exp and log as well as X for the random variable function in 
probability. Linear transformations are described, in many cases, by ma- 
trices which do not look like the common notation of functions at all. In 
set theory, set notation is used, such as (x, y), E, { }, etc. 

In addition to having various classes of functions, the same function can 
also appear in different representations. The most common representations 
of functions are formulae and Cartesian graphs. Other representations are 
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arrow diagrams, tables, sets of ordered pairs, and situations from everyday 
life or other disciplines. In higher mathematics, functions are often repre- 
sented by a symbol only. The following example illustrates the difficulties 
caused by a lack of connectedness between representations. 

When given the following problem: 

If you substitute 1 for x in ax2 + bx + c (a, b and c are real numbers), you 
get a positive number. Substituting 6 gives a negative number. How many 
real solutions does the equation ax2 + bx +c =0 have? Explain. 
................................................................ 


that involved a quadratic expression in one representation (symbolic), most 
subjects (about 80%) tried to solve it (unsuccessfully) by using that 
representation only, even if the use of another representation (graphic) 
could have been much easier and more appropriate. The quadratic function 
is a very fundamental and basic function in the high school curriculum. 
The prospective teachers have studied about and used it since they were in 
high school. They were, probably, very familiar with it in both symbolic 
and graphic representations. Still, seeing a quadratic expression did not 
immediately bring to mind the graphic representation. A lack of rich 
relationships and connectedness between the two representations seems to 
prevent many of the prospective teachers from relating the given equation 
ax2+ bx +c = 0, to a graphical representation of the function 
f(x) = ax2 + bx + c. Eisenberg and Dreyfus (1986) report similar findings 
when even in a course which stressed the graphical method of solving 
inequalities very few of the college students opted for the graphical solution 
on the final exam. 

Alternative Ways of Approaching Functions 

Different uses of functions force us to approach functions differently. 
Sometimes we have to deal with functions point-wise, i.e., to plot, read or 
deal with discrete points of the function either because we are interested in 
some specific points only or since the function is defined on a discrete set. 
Reading values from a given graph or finding the discrete density of a 
discrete random variable are examples of a point-wise approach to func- 
tions. Other times we need to look at intervals, for example, when we deal 
with a local extremum. There are also times when we have to consider the 
function in a global way, and look at its behavior. For example, when we 
want to sketch the graph of a function given in a symbolic form or when 
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we want to find an extremum of a function which is defined on the real 
numbers. And there are times when we deal with functions as entities or 
objects. For example, when we deal with families of functions or when we 
define functions of functions. 

Each one of the alternative ways of approaching functions is different 
from the others and neither one of them is appropriate for all situations. 
Sometimes, when more than one way can be used, some ways are more 
appropriate than others. The following example illustrates the importance 
of choosing between the different approaches. 

When asked how they would explain to a student in algebra 2 how to 
1 

graph the function f(x) =-, half of the inteniewees started their 
x2 - 1 

explanations by suggesting they make a chart of some values of x and y 
(usually small whole numbers and their inverses, which are "easy" to deal 
with), plot the points and then connect them in order to produce a smooth 
curve. The other half suggested looking first for undefined points - an 
approach that pays attention to the behavior of the function. 

The first approach, which emphasizes a point-wise approach to func- 
tions. is not hard to learn. Other researchers (Bell and Janvier, 1981; 
Janvier, 1978; Lovell, 1971; Marnyanskii, 1975; Monk, 1988) report that 
many students are able to deal with functions point-wise only, i.e., they can 
only plot and read points, but cannot think of a function as it behaves over 
intervals or in a global way. But a point-wise approach to graphing 
functions is, in many cases, less powerful than a method that emphasizes 
graphing based on a more global analysis of the behavior of a function. 
For example, graphing a quadratic function that has ( - 100, 78) as a vertex 
by plotting several points near (0,O) will not produce a very informative 
graph. Moreover, graphing a function that is discontinuous at x = 0.3 by 
plotting several points with whole number coordinates, and then connect- 
ing them to make a smooth curve will produce the wrong graph. 

Interestingly, all the prospective teachers in the study have had calculus 
and other advanced courses in mathematics. So, all of them should have 
known that the analysis of some characteristics of the function to be 
graphed is important. They also should have known that some points are 
more important than others, so producing good graphs cannot be based on 
the choice of numbers that are easy to compute. Easy calculation is 
especially not a good argument at the end of the 1980's, when calculators 
and computers are so widespread. The National Council of Teachers of 
Mathematics (NCTM, 1989a) also recommends avoiding graphing by hand 
using tables of values. But it seems that several of the prospective teachers 
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had a strong tendency to use it as the graphing method. In order for 
teachers to be able to help students to be flexible in their approach 
to functions and make good choices between the different available 
approaches, the teachers themselves need to have that knowledge and 
understanding. 

Knowing what functions are and being able to work with them in 
different forms, representations and notations using appropriate ways, is 
important. But, as Freudenthal (1983) says, "the strength of the function 
concept is rooted in the new operations - composing and inverting func- 
tions - which create new possibilities" (p. 523). This is discussed in the 
next section. 

The Strength of the Concept - The Inverse Function and the Composition 
of Functions 

Functions opened new opportunities which Freudenthal (1983) considers 
to be the cause for the success of functions. In addition to the typically 
algebraic operations of addition, subtraction, multiplication, division and 
raising to power, functions can also be composed and inverted. The 
composition of functions is described as having created "a never before 
known wealth of new objects - functions as wild as one wants to contrive" 
(p. 523). The ability to substitute functions into each other and invert them 
created new functions and helped with the study of differentials and 
integrals. Freudenthal attributes that to the explosive growth of the analy- 
sis. Understanding of the concept of function must, therefore, include an 
understanding of the composition of functions and the inverse function. 
The inverse function and the composition of functions, as any other 
concept, cannot be understood in one simplistic way only. Understanding 
these sub-concepts of the concept of function requires understanding the 
general meaning as well as the formal mathematical definition. The follow- 
ing example about the limitation of understanding the inverse function as 
"undoing" only illustrates this point. 

"Undoing" is an important meaning of the inverse function which 
captures the essence of the definition. The importance of this informal 
meaning is also recognized by the National Council of Teachers of Mathe- 
matics (NCTM, 1989a) which recommends that all students explore the 
concept of inverse function informally as a process of undoing the effect of 
applying a given function, while the precise definition of the inverse 
function and composition of functions be reserved for college intending 
students. 
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But understanding the inverse function as "undoing" is not enough. This 
term is too vague and imprecise as we can learn from the way prospective 
teachers answered when they were asked the following problem: 

A student said that there are 2 different inverse functions for the function 
f(x) = 10": One is the root function and the other is the log function. Is the 
student right? Explain. 
................................................................ 


Most people used the idea of "undoing" as their interpretation of an 
inverse function. The xth root of 10 seemed to them to "undo" what 10" 
does: In order to get lox, one starts with 10 and then raises it to the xth 
power. By taking the xth root of lox, one gets 10 back. So, the "undoing" 
conception of an inverse function misled many of the participants in their 
search of the inverse function of f(x) = 10". The "feeling" that an inverse 
function gives back what one started with (10 in our example, instead of x) 
led many subjects to wrongly conclude that the root was the inverse 
function off(x) = 10". So, a solid understanding of the concept of inverse 
function cannot be limited to "undoing". Teachers need to have an 
informal conception as well as more formal knowledge. 

Basic Repertoire - Functions of the High-School Curriculum 

What should a basic repertoire of functions for secondary mathematics 
teachers include? A partial answer to this question is stated implicitly in 
almost every curriculum guide (e.g., Academic Preparation in Mathemat- 
ics, 1985; Chambers et al., 1986; NCTM, 1989a; Michigan Essential Goals 
And Objectives For Mathematics Education, 1988; Oregon Mathematics 
Concept Paper No.2, 1987) - these are the familiar examples that students 
meet in high school. They include, for example, linear, quadratic and 
general polynomial; exponential and logarithmic; trigonometric and ratio- 
nal functions. They should also include some examples of functions from 
discrete mathematics. 

Not only are these specific functions important as a basic repertoire for 
knowing functions, they are especially important for secondary teachers -
the specific population being considered in this paper - since they are the 
very same functions these teachers need to teach as a basic repertoire to 
their students. Every high school text on mathematics which includes 
functions includes some or all of these specific functions. Therefore it is 
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reasonable to assume that every high school teacher should have a good 
grasp of these specific functions in particular. The following example 
highlights the importance of having a meaningful basic repertoire. 

The prospective teachers were asked the following question: 

This is the graph of the function f ( x )  = ax2 + bx + c. 
State whether a, b and c are positive, negative or zero. 
Explain your decision. 

Almost all of the subjects remembered that when the graph of a quadratic 
function looks like n, "a" (in the equation) should be negative. But many 
of them could not explain why the rule holds. 

Okay, this is, urn, basically there are some rules involving this type of equation. And, urn, a 
lot of way it's usually taught is to memorize the rules and that's probably what I've done. And 
I remembered the rules and the coefficient of the x2 term is negative and it opens downward 
and when it's positive it opens upwards. So this opens downward so it must be negative. 

The quadratic function is a special and important case of the functions 
used in high school mathematics. If one understands the relationship 
between "a" in the quadratic expression and the graph, one has the 
ability to generalize to related relationships between the leading coefficient 
of any polynomial and its graph. Whereas, memorizing the "rule" for 
quadratics gives no basis for generalization. So understanding the rela- 
tionship between the role of "a" in the symbolic representation of a 
quadratic function and in the graphic representation is very powerful. But 
memorization only does not empower the learner. 

Related to the idea of basic repertoire, although not completely paral- 
lel, is the idea of understanding mathematical concepts and topics which 
are closely connected to the concept of function. One such topic is an 
understanding of the structure of different number sets which serve as 
domain and range for most of the basic repertoire functions, namely 
natural numbers, integers, rationals, irrationals, real numbers, and even 
complex numbers. Since trigonometric functions should serve as part of 
the basic repertoire, teachers need to have an understanding of radians. 
The following example illustrates an incomplete understanding of a 
number set structure which causes difficulties with an understanding of 
functions. 
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The subjects were asked to graph the following function: 

x, if x is a rational number, 

0, if x is an irrational number. 

Some of them seemed to approach the problem of graphing the function 
point-wise. They started from 0 and then tried to sketch the graph point by 
point, as if the set of real numbers and/or the set of irrational numbers is 
countable. For example, one subject sketched the graph in Fig. 2 and then 
explained: 

1 is going to be 1, n is going to be 0. e is going to be 0, 2 is going to be 2 (pause). Well, it's 
going to be smooth everywhere except where you get to an irrational point and then you're 
going to have a sharp point which is not going to be continuous. Wherever there's an 
irrational number it's not going to be continuous. 

It's going to curve up until it gets to, like if there's an irrational number between 0 and 1 it's 
going to go down to the irrational number, and then it's going to, we've got our negative 
numbers too. Maybe it's like this [points to the graph - see Figure 21, except it's not going 
to be smooth because every time you hit zero ~t 's  going to come straight down and then it will 
have to go to the next rational or irrational number. I'm being really general about this. 

x, if x is a rational number, 
Fig. 2. "Graph" of Ax) = 

0, if x is an irrational number. 

This subject thought of the real numbers as a countable and even discrete 
set, as if one starts from 0 and keeps going to the next number; as if one 
goes through several numbers until one hits an irrational number. She held 
a misconception about the structure of real numbers which suited the 
point-wise approach to graphing that she used. But real numbers are used 
as the domain and range of many functions in the high school and college 
curriculum. Having a wrong conception of the structure of the sets which 
serve as domain and range leads to a wrong understanding of the function 
itself. 

Knowledge and Understanding of the Function Concept 

The following two examples demonstrate the importance of both proce- 
dural and conceptual knowledge and the relationships between them. The 
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first example goes back to the problem that was already discussed in the 
section 'Different representations of functions', where the subjects were told 
that if one substitutes 1 for x in ax2 + bx + c (a, b and c are real numbers), 
one gets a positive number and substituting 6 gives a negative number. The 
subjects were then asked to find the number of real solutions of the 
equation ax2 + bx + c = 0. As we have already seen, lack of rich relation- 
ships and connectedness between different representations of the same 
function (conceptual knowledge) prevented subjects from solving the prob- 
lem. Not only that, but weak conceptual knowledge also did not warn the 
subjects when, by misusing procedural knowledge (for solving a system of 
two equations: a + b + c = 0 and 36a +6b +c = 0), they got answers which 
do not make sense at all, such as co and even 3, 4 or 5 as the number of 
solutions of a quadratic equation. Even though they probably "knew" that 
a quadratic equation has at  most two solutions, the prospective teachers 
lacked the connections which characterize conceptual knowledge to make 
this knowledge accessible. 

In contrast, in another example which was introduced in the section 'The 
strength of the concept - The inverse function and the composition of 
functions', the subjects were asked to decide whether a student was right in 
claiming that both the root function and the log function are inverse 
functions for the function f(x) = 10". The analysis of responses shows how 
a correct use of procedural knowledge can help in cases where the concep- 
tual knowledge is naive and immature. 

The most common description of the root function by the participants 
was the xth root of 10 or just the xth root (without specifying 'of what'). 
Some people then used their procedural knowledge of inverse functions and 
applied correctly the algorithm for checking whether a function is an 
inverse function by composing the two functions and checking to see if they 
got the identity function f(x) = x as the result. For example: 

"f- ' (x) = log n : log( 10") = x log 10 = x - correct 
r 

f - ' (x)  = J x :  (lOX)lix= 10 - incorrect." 

(Note that the subject did not really check the function f - ' (x)  =6.) 
But most people did not use their procedural knowledge about inverse 

functions. Rather they used their naive conceptual knowledge of what an 
inverse function was. These people used the idea of "undoing" as their 
interpretation of an inverse function and wrongly concluded that root was 
the inverse function of f(x) = 10". Therefore, correct procedural knowledge 
can, sometimes, help in monitoring naive conceptual knowledge. 
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Knowledge about Mathematics 

Knowledge about the nature of mathematics influences the substantive 
knowledge of functions. The use of means in a mathematically wrong way 
may lead to an incorrect knowledge of functions. For example, inductive 
and deductive reasoning are basic to mathematics. Their importance is also 
recognized by the National Council of Teachers of Mathematics (NCTM, 
1989a) which recommends that in grades 9-12, the mathematics curricu- 
lum should include principles of inductive and deductive reasoning. Stu- 
dents should experience the making of a conjecture by generalizing from a 
pattern or observations made in particular cases (inductive reasoning) and 
then test the conjecture by constructing either a logical verification or a 
counter example (deductive reasoning). 

Investigation of a situation by checking specific cases is a very powerful 
strategy in mathematics. Many discoveries were made by inductive reason- 
ing. Looking at specific cases helps not only with the formulation of a 
generalization but also with the understanding of the situation. But induc- 
tive reasoning is not enough as an explanation for the existence of the rule. 
In other words, checking examples is not a proof. The following example 
illustrates this point. The subjects were given a graph of a quadratic 
function and were asked to decide what the signs of "a", "b" and "c" of 
the corresponding symbolic representation: f(x) = ax2 + bx +c were. 
Many subjects used a method of formulating rules based on the checking 
of a very limited number of simple quadratic functions. They "found", for 
example, that "b" is positive if and only if the axis of symmetry goes 
through a positive x. 

Making conclusions which are based only on the checking of some 
examples without making sure that all possibilities are covered or using 
deductive reasoning, as was shown in the above example, points to a lack 
of understanding of what counts as an explanation, and which ways are 
considered appropriate and acceptable in mathematics for transforming a 
conjecture to a theorem, i.e., what is acceptable as a proof. Knowledge 
about the nature of mathematics is, therefore, an integral and important 
part of the knowledge of functions. 

CONCLUSION 

How do teachers construct their subject matter knowledge? A great deal of 
that is done throughout their K-12 study and college courses. However, as 
we can learn from the examples in this paper, prospective secondary 
teachers' knowledge of functions tends to be weak and fragile. We cannot 
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assume that they have a comprehensive and well-articulated knowledge of 
the mathematics they have to teach. The same conclusion was reached by 
Ball (1988, 1990) in relation to elementary and secondary mathematics. 
Efforts must be made, therefore, to improve mathematics courses in general 
as well as teach prospective teachers the mathematics they have to teach. 
Mathematics courses should be constructed differently so that better under- 
standing will be developed. But, in addition to their regular mathematics 
courses, teachers need special courses, in which they can learn mathematics 
for teachers. These courses should be developed in the light of the seven 
aspects of the framework described in this paper and need to deepen and 
integrate the subject matter knowledge these teachers need to teach. 

In these courses teachers need to meet the subject content they have to 
teach in ways which are different from the ways they have been used to 
previously. Examples for that can be found in Lappan and Even (1989) 
and in Tirosh, Nachmias and Arcavi (1990). The first describes mathemat- 
ical experiences for prospective elementary teachers in which they explore, 
for instance, the concept of distance in an unfamiliar geometry. The latter 
is intended for secondary teachers and describes a re-viewing of linear 
functions through an exploration of an unfamiliar graphical representation. 
Meeting a "familiar" concept in an unfamiliar situation forces the teachers 
to re-examine their subject matter knowledge, overcome difficulties, and 
construct a better, deeper and more articulated notion. 

NOTES 

This paper is based on a theoretical framework developed as part of the author's doctoral 
dissertation, completed at Michigan State University in 1989 under the direction of Glenda 
Lappan. The author gratefully acknowledges Glenda Lappan and William Fitzgerald for their 
help on this work; and Deborah Ball, Tommy Dreyfus and Rina Hershkowitz, as well as the 
ESM editor, for their helpful comments on this article. 
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